Part Number Hot Search : 
TZA3044 80N60 IS42S PG0087 AA3528YC 80NF55 AD7416AR IS42S
Product Description
Full Text Search
 

To Download HCPL-3101-000E Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HCPL-3100, HCPL-3101
Power MOSFET/IGBT Gate Drive Optocouplers
Data Sheet
Description
The HCPL-3100/3101 consists of an LED* optically coupled to an integrated circuit with a power output stage. These optocouplers are suited for driving power MOSFETs and IGBTs used in motor control inverter applications. The high operating voltage range of the output stage provides the voltage drives required by gate controlled devices. The voltage and current supplied by these optocouplers allow for direct interfacing to the power device without the need for an intermediate amplifier stage. The HCPL-3100 switches a 3000 pF load in 2 s and the HCPL-3101, using a higher speed LED, switches a 3000 pF load in 0.5 s. With a CMR rating of 15 kV/s typical these opto-couplers readily reject transients found in inverter applications. The LED controls the state of the output stage. Transistor Q2 in the output stage is on with the LED off, allowing the gate of the power device to be held low. Turning on the LED turns off transistor Q2 and switches on transistor Q1 in the output stage which provides current and voltage to drive the gate of the power device.
Features
* High output current IO1 and IO2 (0.6 A Peak, 0.1 A continuous) * 15 kV/s minimum Common Mode Rejection (CMR) at VCM = 1500 V * Wide operating VCC range (15 to 30 volts) * High speed - 1 s typical propagation delay (HCPL-3100) - 0.3 s typical propagation delay (HCPL-3101) * Recognized under UL 1577 for dielectric withstand proof test voltages of 5000 vac, 1 minute
Applications
* * * * Isolated MOSFET/IGBT gate drive AC and DC motor drives General purpose industrial inverters Uninterruptable power supply
Functional Diagram
HCPL-3100 ANODE 1 8 VCC 1 HCPL-3101 8 VCC
CATHODE
2
Q2
7
GND
ANODE
2
Q2
7
GND
3
Q1
6
VO2
CATHODE
3
Q1
6
V O2
4
5
VO1
4
5
V O1
TRUTH TABLE LED OUTPUT ON HIGH LEVEL OFF LOW LEVEL
Q1 ON OFF
Q2 OFF ON
THE USE OF A 0.1 F BYPASS CAPACITOR CONNECTED BETWEEN PINS 8 AND 7 IS RECOMMENDED. ALSO CURRENT LIMITING RESISTOR IS RECOMMENDED (SEE FIGURE 1, AND NOTE 2 AND NOTE 7).
*HCPL-3100 LED contains Silicon-doped GaAs and HCPL-3101 LED contains AlGaAs.
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.
Schematic
HCPL-3100
I CC 8 GND 1 ANODE + Q1 IO1 5 THE USE OF A 0.1 F BYPASS CAPACITOR CONNECTED BETWEEN PINS 8 AND 7 IS RECOMMENDED. ALSO CURRENT LIMITING RESISTOR IS RECOMMENDED (SEE FIGURE 1, AND NOTE 2 AND NOTE 7). IF Q2 IO2 6 7 ANODE + V O2 CATHODE V O1 - 3 Q1 IO1 5 2 IF Q2 IO2 6 V CC
HCPL-3101
I CC 8 GND 7 V CC
V O2
CATHODE
- 2
V O1
Ordering Information
HCPL-3100 and HCPL-3101 are UL Recognized with 5000 Vrms for 1 minute per UL1577. Option Part Number HCPL-3100 HCPL-3101 RoHS Compliant -000E -300E -500E Package 300 mil DIP-8 Surface Mount X X Gull Wing X X Tape & Reel Quantity 50 per tube 50 per tube 1000 per reel
X
To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. Example 1: HCPL-3100-500E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging and RoHS compliant. Example 2: HCPL-3101-000E to order product of 300 mil DIP package in Tube packaging and RoHS compliant. Option datasheets are available. Contact your Avago sales representative or authorized distributor for information. Remarks: The notation `#XXX' is used for existing products, while (new) products launched since July 15, 2001 and RoHS compliant will use `-XXXE.'
2
Outline Drawing
0.65 (0.026) 1.05 (0.040) 0.90 (0.035) 1.50 (0.059) 0 13
8 TYPE NUMBER DATE CODE
7
6
5 0.16 (0.006) 0.36 (0.014) 6.00 (0.236) 7.00 (0.276) 7.32 (0.288) 7.92 (0.312) 0 13
A XXXX YYWW
1
2
3
4
HCPL-3100 ANODE 9.16 (0.361) 10.16 (0.400) 0.50 (0.020) TYP. CATHODE 3.00 (0.118) 4.00 (0.157) 2
Q2
HCPL-3101 8 VCC 1 8 VCC
1
7
GND
ANODE
2
Q2
7
GND
3
Q1
6
VO2
CATHODE
3
Q1
6
V O2
2.90 (0.114) 3.90 (0.154)
2.55 (0.100) 3.55 (0.140)
4
5
VO1
4
5
V O1
0.40 (0.016) 0.60 (0.024) 2.29 (0.090) 2.79 (0.110)
3
Demonstrated ESD Performance
Human Body Model: MIL-STD883 Method 3015.7: Class 2 Machine Model: EIAJ IC-1211988 (1988.3.28 Version 2), Test Method 20, Condition C: 1200 V
Regulatory Information
The HCPL-3100/3101 has been approved by the following organization:
UL
Recognized under UL 1577, Component Recognition Program, File E55361.
Insulation and Safety Related Specifications
Parameter Min. External Air Gap (External Clearance) Min. External Tracking Path (External Creepage) Min. Internal Plastic Gap (Internal Clearance) Symbol L(IO1) L(IO2) Value 6.0 6.0 Units mm mm Conditions Shortest distance measured through air, between two conductive leads, input to output Shortest distance path measured along outside surface of optocoupler body between input and output leads Through insulation distance conductor to conductor inside the optocoupler cavity
0.15
mm
Absolute Maximum Ratings
Parameter Storage Temperature Operating Temperature Input Continuous Current Reverse Voltage Supply Voltage VCC Output 1 Continuous Current Peak Current Voltage Output 2 Continuous Current Peak Current Output Power Dissipation Total Power Dissipation Lead Solder Temperature PO PT VO1 IO2 IO1 Symbol TS TA IF VR HCPL-3100 HCPL-3101 HCPL-3100 HCPL-3101 HCPL-3100 HCPL-3101 35 Device Min. -55 -40 -40 Max. 125 100 85 25 20 6 5 V 0.1 0.6 35 0.1 0.6 500 550 A A V A A mW mW Pulse Width < 0.15 s, Duty cycle = 1% 12 12 1 1 1 1 Pulse Width < 0.15 s, Duty cycle = 1% 1 1 Unit C C mA mA V TA = 25C 11 11 1 1 Conditions Fig. Note
270C for 10 s, 1.0 mm below seating plane
4
Recommended Operating Conditions
Parameter Power Supply Voltage Symbol VCC IF TA HCPL-3100 HCPL-3101 Operating Temperature Device Min. 15 Max. 30 Units V
Input Current (ON)
14 15 -40
20 20 70
mA mA C
Recommended Protection for Output Transistors
During switching transitions, the output transistors Q1 and Q2 of the HCPL-3100/3101 can conduct large amounts of current. Figure 1 describes a
recommended circuit design showing a current limiting resistor R2 which is necessary in order to prevent damage to the output transistors Q1 and Q2. (See Note 7.) A bypass capacitor C1 is also recommended to reduce power supply noise.
+5 V
HCPL-3100/1 8 R3 7 ANODE Q2 + HVDC 6 TTL OR LSTTL TOTEM POLE OUTPUT GATE R2 CATHODE Q1 5 12 V IGBT (OR )t (MOSFET) 3-PHASE AC 12 V C1
CONTROL INPUT
- HVDC R2 = 25 - 100 R3 = 180 (HCPL-3100) 240 (HCPL-3101) BYPASS CAPACITOR C1 = 0.1 F
Figure 1. Recommended output transistor protection and typical application circuit.
5
Electrical Specifications
Over recommended temperature (TA = -40C to +100C, HCPL-3100; TA = -40C to +85C, HCPL-3101) unless otherwise specified.
Parameter Input Forward Voltage Sym. VF Device HCPL-3100 Min. 0.6 HCPL-3101 1.2 Input Reverse Current Input Capacitance IR HCPL-3100 HCPL-3101 CIN VO1L HCPL-3100 HCPL-3101 Output 1 Low Level Voltage Leakage Current Output 2 High Level Voltage Low Level Voltage Leakage Current Supply Current High Level HCPL-3100 HCPL-3101 IO1L VO2H HCPL-3100 HCPL-3101 VO2L 0.5 0.8 V 20 22 500 A V 30 60 0.2 250 150 0.4 pF pF V Typ. 1.2 0.9 1.6 1.5 Max. 1.4 1.75 10 Units V V V V A Test Conditions IF = 20 mA IF = 0.2 mA IF = 10 mA IF = 0.2 mA VR = 4 V VF = 5 V VF = 0 V, f = 1 kHz, TA = 25C VF = 0 V, f = 1 MHz, TA = 25C IF = 10 mA IF = 5 mA VCC1 = 12 V, IO1 = 0.1 A, VCC2 = -12 V 2, 17, 18 5 3, 19, 20 4, 21, 22 6 2 2 TA = 25C 14 TA = 25C Fig. 13 Note
VCC = VO1 = 35 V, VO2 = 0 V IF = 0 mA, TA = 25C IF = 10 mA IF = 5 mA VCC = 24 V, VO1 = 24 V, IO2 = -0.1 A
VCC = VO1 = 24 V, IO2 = 0.1 A, IF = 0 mA IF = 10 mA IF = 5 mA VCC = 35 V, VO2 = 35 V, TA = 25C
IO2L
HCPL-3100 HCPL-3101
-
-
500
A
ICCH
HCPL-3100 HCPL-3101
-
1.3 1.3 1.3 4.0 1.5 -
3.0 3.0 3.0 7.0 10.0 3.0 5.0
mA mA mA mA mA mA mA
VO1 = 24 V VCC = 24 V, IF = 10 mA VO1 = 24 V VCC = 24 V, IF = 5 mA VO1 = 24 V VCC = 24 V, IF = 0 mA TA = 25C VCC = VO1 = 24 V TA = 25C VCC = VO1 = 24 V
7, 23
2
Low Level Low to High Threshold Input
ICCL IFLH HCPL-3100
7, 24 8, 15, 16 2, 3
1.0 0.6
HCPL-3101
0.3 0.2
6
Switching Specifications (TA = 25C)
Parameter Propagation Delay Time to High Output Level Propagation Delay Time to Low Output Level Rise Time Sym. tPLH Device HCPL-3100 HCPL-3101 tPHL HCPL-3100 HCPL-3101 tr tf |CMH| HCPL-3100 HCPL-3101 Fall Time HCPL-3100 HCPL-3101 Output High Level Common Mode Transient Immunity Output Low Level Common Mode Transient Immunity HCPL-3100 HCPL-3101 15 kV/s 0.2 0.5 s Min. Typ. 1 0.3 1 0.3 0.2 Max. 2 0.5 2 0.5 0.5 Units s s s s s Test Conditions IF = 10 mA IF = 5 mA IF = 10 mA IF = 5 mA IF = 10 mA IF = 5 mA IF = 10 mA IF = 5 mA IF = 10 mA IF = 5mA VCM = 1500 V (peak), VCC = 24 V VO1 = 24 V V02H = V02L = 2.0 V 10 2 VCC = 24 V, VO1 = 24 V, RG = 47 , CG = 3000 pF Fig. 9, 25, 26, 27 Note 2, 6
|CML|
15
-
kV/s
IF = 0 mA
Packaging Characteristics
Parameter Input-Output Momentary Withstand Voltage* Resistance (Input-Output) Capacitance (Input-Output) Sym. VISO RI-O CI-O Min. 5000 5x1010 - 1011 1.2 - - Typ. Max. Units V rms pF Test Conditions RH = 40% to 60% t = 1 min, TA = 25C VI-O = 500 V, TA = 25C RH = 40% to 60% f = 1 MHz Fig. Note 4, 5 4 4
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equipment level safety specification, or Avago Application Note 1074, "Optocoupler Input-Output Endurance Voltage."
Notes: 1. Derate absolute maximum ratings with ambient temperatures as shown in Figures 11 and 12. 2. A bypass capacitor of 0.01 F or more is needed near the device between VCC and GND when measuring output and transfer characteristics. 3. IFLH represents the forward current when the output goes from low to high. 4. Device considered a two terminal device; pins 1-4 are shorted together and pins 5-8 are shorted together. 5. For devices with minimum VISO specified at 5000 V rms, in accordance with UL 1577, each optocoupler is proof-tested by applying an insulation test voltage 6000 V rms for one second (leakage current detection limit, II-O 200 A). 6. The tPLH and tPHL propagation delays are measured from the 50% level of the input pulse to the 50% level of the output pulse. 7. R2 limits the Q1 and Q2 peak currents. For more applications and circuit design information see Application Note "Power Transistor Gate/Base Drive Optocouplers."
7
HCPL-3100 1 IF 2 GND
Q2
HCPL-3100
VCC 8 VCC1 VCC2 6
Q1
1 IF
+ -
VCC
8
VCC + -
7 + -
2
GND
Q2
7
- VO2H +
IO2
3
- IO1 + VO1L
3
Q1
6 VO2 5 VO1
V O2 5 V O1
4
4
Figure 2. Test circuit for low level output voltage VO1L.
Figure 3. Test circuit for high level output voltage VO2H.
HCPL-3100 1 IF 2 GND
Q2
HCPL-3100
VCC 8 VCC 7 - VO2L + IO2 + -
1 IF 2
VCC
8 + -
GND
Q2
7
V CC
3
Q1
6 VO2 5 VO1
3
Q1
6 VO2 5 V O1 IO1L
4
4
Figure 4. Test circuit for low level output voltage VO2L.
Figure 5. Test circuit for leakage current IO1L.
HCPL-3100 1 IF 2 GND
Q2
HCPL-3100
VCC 8 + 7 IO2L VCC
1 IF 2
VCC
ICC 8 + -
GND
Q2
7
V CC
3
Q1
6 V O2 5 V O1
3
Q1
6 V O2 5 V O1
4
4
Figure 6. Test circuit for leakage current IO2L.
Figure 7. Test circuit for ICCH and ICCL.
HCPL-3100 IF SWEEP 1 VCC 8 VCC 2 GND
Q2
+ -
7
- V O2 +
3
Q1
6 V O2 5 V O1
4
Figure 8. Test circuit for threshold input current IFLH.
8
HCPL-3100 IF
t r = t f = 0.01 s V IN PULSE WIDTH 5 s DUTY RATIO 50%
HCPL-3100
VCC 8 V CC + -
1
IF
1
VCC
8 V CC + -
2
GND
Q2
7
3
Q1
6 V O2 5 VO1
- V O2 + RG
SW
CG
2 B 3
GND
Q2
7
- V O2 +
A
6
Q1
VO2 5 VO1
4
4 + V CM
50%
-
V CM V CM
V IN WAVE FORM t PLH t PLH 90% 50% VOUT WAVE FORM 10%
GND CMH , VO2 SW AT A, IF = 10 mA, HCPL-3100 SW AT A, IF = 5 mA, HCPL-3101 VO2H
V O2H
tr
tf
CM L , VO2 SW AT B, I F = 0 mA
VO2L
V O2L GND
Figure 9. Test circuit for tPLH, tPHL, tr, and tf.
Figure 10. Test circuit for CMH and CML.
60
60 50 40 30 20 10 0 -40 -25
600
POWER DISSIPATION PO, Ptot (mW)
FORWARD CURRENT IF (mA)
FORWARD CURRENT IF (mA)
50 40 30 20 10 0 -40 -25
500 400 300 200 100 0 -40 -25 PO Ptot
0
25
50
75
100
125
0
25
50
75 85 100
125
0
25
50
75
100
125
AMBIENT TEMPERATURE TA (C)
AMBIENT TEMPERATURE TA (C)
AMBIENT TEMPERATURE TA (C)
Figure 11. LED forward current vs. ambient temperature, HCPL-3100.
Figure 12. LED forward current vs. ambient temperature, HCPL-3101.
Figure 13. Maximum power dissipation vs. ambient temperature, HCPL-3100.
9
600
100
100
POWER DISSIPATION PO, Ptot (mW)
FORWARD CURRENT IF (mA)
400 300 200 100 0 -40 -25
PO
Ptot
10
25C TA = 100C
FORWARD CURRENT IF (mA)
500
10
0C TA = 85C -20C 50C
0C 1 85C -40C
1
-40C
50C 25C 0 25 50 75 85 100 125 0.1 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.1 1.0 1.2 1.4 1.6 1.8 2.0 2.2
AMBIENT TEMPERATURE TA (C)
FORWARD VOLTAGE VF (V)
FORWARD VOLTAGE VF (V)
Figure 14. Maximum power dissipation vs. ambient temperature, HCPL-3101.
Figure 15. Typical forward current vs. forward voltage, HCPL-3100.
Figure 16. Typical forward current vs. forward voltage, HCPL-3101.
RELATIVE INPUT THRESHOLD CURRENT (%)
RELATIVE INPUT THRESHOLD CURRENT (%)
RELATIVE INPUT THRESHOLD CURRENT (%)
120 TA = 25C 110 VALUE OF VCC = 24 V ASSUME 100 100
120 TA = 25C 110
160 VCC = 24 V 140
100
120 IFLH = 100% at TA = 25C 100
90
90 IFLH = 100% at VCC = 24 V 80
80
80
70 15
18
21
24
27
30
70 15
18
21
24
27
30
60 -40
-20
0
20
40
60
80
100
SUPPLY VOLTAGE VCC (V)
SUPPLY VOLTAGE VCC (V)
AMBIENT TEMPERATURE TA (C)
Figure 17. Normalized low to high threshold input current vs. supply voltage, HCPL-3100.
Figure 18. Normalized low to high threshold input current vs. supply voltage, HCPL-3101.
Figure 19. Normalized low to high threshold input current vs. ambient temperature, HCPL-3100.
RELATIVE INPUT THRESHOLD CURRENT (%)
O1 LOW LEVEL OUTPUT VOLTAGE VO1L (V)
O1 LOW LEVEL OUTPUT VOLTAGE VO1L (V)
120 VCC = 24 V 110 100 90 80 70 60 -40 IFLH = 100% at TA = 25C
3 TA = 25C VCC1 = 12 V VCC2 = -12 V IF = 10 mA 2
3 TA = 25C VCC1 = 12 V VCC2 = -12 V IF = 5 mA 2
1
1
-20
0
20
40
60
80
100
0
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0
0.1
0.2
0.3
0.4
0.5
0.6
AMBIENT TEMPERATURE TA (C)
O1 OUTPUT CURRENT IO1 (A)
O1 OUTPUT CURRENT IO1 (A)
Figure 20. Normalized low to high threshold input current vs. ambient temperature, HCPL-3101.
Figure 21. Typical low level output 1 voltage vs. output 1 current, HCPL-3100.
Figure 22. Typical low level output 1 voltage vs. output 1 current, HCPL-3101.
10
0.25 0.20 0.15 0.10 0.05 0 -40
VCC1 = 12 V VCC2 = -12 V IF = 10 mA IO2 = 0.1 A
0.25 0.20 0.15 0.10 0.05 0 -40
VCC1 = 12 V VCC2 = -12 V IF = 5 mA IO2 = 0.1 A
O2 HIGH LEVEL OUTPUT VOLTAGE VO2H (V)
O1 LOW LEVEL OUTPUT VOLTAGE VO1L (V)
O1 LOW LEVEL OUTPUT VOLTAGE VO1L (V)
0.30
0.30
30 27 24 21 18 15 12 15 TA = 25C IF = 10 mA
-20
0
20
40
60
80
100
-20
0
20
40
60
80
100
18
21
24
27
30
AMBIENT TEMPERATURE TA (C)
AMBIENT TEMPERATURE TA (C)
SUPPLY VOLTAGE VCC (V)
Figure 23. Typical low level output 1 voltage vs. ambient temperature, HCPL-3100.
Figure 24. Typical low level output 1 voltage vs. ambient temperature, HCPL-3101.
Figure 25. Typical high level output 2 voltage vs. supply voltage, HCPL-3100.
O2 HIGH LEVEL OUTPUT VOLTAGE VO2H (V)
O2 HIGH LEVEL OUTPUT VOLTAGE VO2H (V)
27 24 21 18 15 12 15
TA = 25C IF = 5 mA
IO2 NEARLY = 0 A 23
O2 HIGH LEVEL OUTPUT VOLTAGE VO2H (V)
30
24
24 IO2 = NEARLY 0 A 23
22
IO2 = -0.1 A
22
IO2 = -0.1 A
21 VCC = 24 V IF = 10 mA 20 -40 -20 0 20 40 60 80 100
21 VCC = 24 V IF = 5 mA 20 -40 -20 0 20 40 60 80 100
18
21
24
27
30
SUPPLY VOLTAGE VCC (V)
AMBIENT TEMPERATURE TA (C)
AMBIENT TEMPERATURE TA (C)
Figure 26. Typical high level output 2 voltage vs. supply voltage, HCPL-3101.
Figure 27. Typical high level output 2 voltage vs. ambient temperature, HCPL-3100.
Figure 28. Typical high level output 2 voltage vs. ambient temperature, HCPL-3101.
O2 LOW LEVEL OUTPUT VOLTAGE VO2L (V)
O2 LOW LEVEL OUTPUT VOLTAGE VO2L (V)
O2 LOW LEVEL OUTPUT VOLTAGE VO2L (V)
3 TA = 25C VCC = VO1 = 24 V IF = 0 mA 2
3 TA = 25C VCC = VO1 = 24 V IF = 0 mA 2
0.8 0.7 0.6 0.5 0.4 0.3 0.2 -40 VCC = 24 V IF = 0 mA IO2 = 0.1 A
1
1
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0
0
0.1
0.2
0.3
0.4
0.5
0.6
-20
0
20
40
60
80
100
O2 OUTPUT CURRENT IO2 (A)
O2 OUTPUT CURRENT IO2 (A)
AMBIENT TEMPERATURE TA (C)
Figure 29. Typical low level output 2 voltage vs. output 2 current, HCPL-3100.
Figure 30. Typical low level output 2 voltage vs. output 2 current, HCPL-3101.
Figure 31. Typical low level output 2 voltage vs. ambient temperature, HCPL-3100.
11
O2 LOW LEVEL OUTPUT VOLTAGE VO2L (V)
0.8
HIGH LEVEL SUPPLY CURRENT ICCH (mA)
3.0 VCC = 24 V IF = 0 mA IO2 = 0.1 A 2.5 2.0 1.5 1.0 0.5 0 15 TA = 25C IF = 10 mA
3.0
HIGH LEVEL SUPPLY CURRENT ICCH (mA)
0.7 0.6 0.5 0.4 0.3 0.2 -40
2.5 2.0 1.5 1.0 0.5 0 15
TA = 25C IF = 5 mA
-20
0
20
40
60
80
100
18
21
24
27
30
18
21
24
27
30
AMBIENT TEMPERATURE TA (C)
SUPPLY VOLTAGE VCC (V)
SUPPLY VOLTAGE VCC (V)
Figure 32. Typical low level output 2 voltage vs. ambient temperature, HCPL-3101.
Figure 33. Typical high level supply current vs. supply voltage, HCPL-3100.
Figure 34. Typical high level supply current vs. supply voltage, HCPL-3101.
3.0
LOW LEVEL SUPPLY CURRENT ICCL (mA)
3.0 TA = 25C IF = 0 mA 2.5 2.0 1.5 1.0 0.5 0 15 TA = 25C IF = 0 mA
HIGH LEVEL SUPPLY CURRENT ICCH (mA)
3.0 2.5 2.0 1.5 1.0 0.5 0 -40 VCC = 24 V IF = 10 mA
2.5 2.0 1.5 1.0 0.5 0 15
18
21
24
27
30
LOW LEVEL SUPPLY CURRENT ICCL (mA)
18
21
24
27
30
-20
0
20
40
60
80
100
SUPPLY VOLTAGE VCC (V)
SUPPLY VOLTAGE VCC (V)
AMBIENT TEMPERATURE TA (C)
Figure 35. Typical low level supply current vs. supply voltage, HCPL-3100.
Figure 36. Typical low level supply current vs. supply voltage, HCPL-3101.
Figure 37. Typical high level supply current vs. ambient temperature, HCPL-3100.
HIGH LEVEL SUPPLY CURRENT ICCH (mA)
3.0
LOW LEVEL SUPPLY CURRENT ICCL (mA)
3.0 VCC = 24 V IF = 5 mA 2.5 2.0 1.5 1.0 0.5 0 -40 VCC = 24 V IF = 0 mA
LOW LEVEL SUPPLY CURRENT ICCL (mA)
3.0 2.5 2.0 1.5 1.0 0.5 0 -40 VCC = 24 V IF = 0 mA
2.5 2.0 1.5 1.0 0.5 0 -40
-20
0
20
40
60
80
100
-20
0
20
40
60
80
100
-20
0
20
40
60
80
100
AMBIENT TEMPERATURE TA (C)
AMBIENT TEMPERATURE TA (C)
AMBIENT TEMPERATURE TA (C)
Figure 38. Typical high level supply current vs. ambient temperature, HCPL-3101.
Figure 39. Typical low level supply current vs. ambient temperature, HCPL-3100.
Figure 40. Typical low level supply current vs. ambient temperature, HCPL-3101.
12
PROPAGATION DELAY TIME tPHL, tPLH (s)
tPHL tPLH 2.0
PROPAGATION DELAY TIME tPHL, tPLH (s)
VCC = VO1 = 24 V RG = 47 W CG = 3000 pF
tPHL tPLH 0.8
PROPAGATION DELAY TIME tPHL, tPLH (s)
2.5
1.0 VCC = VO1 = 24 V RG = 47 W CG = 3000 pF
2.5 VCC = VO1 = 24 V RG = 47 W CG = 3000 pF IF = 10 mA
2.0
1.5 TA = 85C 1.0 25C -40C
0.6 TA = 85C 0.4 25C -40C
1.5
1.0 tPHL 0.5 tPLH
0.5 -40C 0 5 10 25C 15 85C 20 25
0.2 85C 0 5 10 25C 15 -40C 20 25
0
0
0 -40
-20
0
20
40
60
80
100
FORWARD CURRENT IF (mA)
FORWARD CURRENT IF (mA)
AMBIENT TEMPERATURE TA (C)
Figure 41. Typical propagation delay time vs. forward current, HCPL-3100.
Figure 42. Typical propagation delay time vs. forward current, HCPL-3101.
Figure 43. Typical propagation delay time vs. ambient temperature, HCPL-3100.
PROPAGATION DELAY TIME tPHL, tPLH (s)
1.0 VCC = VO1 = 24 V RG = 47 W CG = 3000 pF IF = 5 mA
0.8
0.6 tPLH tPHL 0.2
0.4
0 -40
-20
0
20
40
60
80
100
AMBIENT TEMPERATURE TA (C)
Figure 44. Typical propagation delay time vs. ambient temperature, HCPL-3101.
13
For product information and a complete list of distributors, please go to our website:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright (c) 2007 Avago Technologies Limited. All rights reserved. Obsoletes 5989-2939EN AV01-0573EN July 16, 2007


▲Up To Search▲   

 
Price & Availability of HCPL-3101-000E

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X